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Abstract-Some clastic materials arc capable of sustaining finite equilibrium deformations with
discontinuous strains. Boundary-value problems for such "unstable" clastic materials often possess
an inlinite number of solutions. suggesting that the theory sutTers from a constitutive
ddiciency. In the sclling of the tille-dimensional theory of bars in tension. the prescnt paper explores
the ellllsequel1l:es of supplementing the theory with further constitutive information. This additional
information pertains to the surface of strain discontinuity and consists of a "kinetic relation" and
a criterion for the "initiation" (,I" such a surfaL"C. We show that the quasi·static response of the bar
to a prescribed fllrce histl1ry is then fully determined. In particular. we observe how ullst•• ble clastic
Illat.:rials can he lIscd tOlllodclmacroscopic behavior similar to that associated with viscoplasticity.

l. INTRODUCTION

Bodies composed ofcertain types of homogeneous clastic materials can be finitely deformed
to equilibrium states in which displacement gradients. strains and stresses suffer jump
discontinuities across special surfaces. Elaslostatic lields of this kind arise, for example, in
conlinuum mechanicallrealmenls ofstress-induced phase transformations in solids (James,
ItJ79. 1984).

When such jumps in disphlcement gradient occur during quasi-static, isothermal
motions. the halance between the rute of increase of stored energy and the rate of work of
external forces associated with conventionally smooth deformations of clastic bodies no
longer holds. This balance is replaced by one which includes an additional effect that may
be interpreted as the rute of work of a fictitious "driving traction" acting on the moving
surface of discontinuity (Knowles, 1979). The driving traction is formally related to the
notion ofa "force on a defect" introduced by Eshelby (1956) and discussed by Rice (1975).

The altCfed energetics of finite e1astostatic fields involving strain jumps suggest that
such fields might be used to model certain types of dissipative behavior in solids. The
circumstances, in fact, arc reminiscent in some respects of those present in the classical
theory of flows of ideal fluids in which shock waves are present. In the latter subject, shocks
account in an idealized way for the neglected dissipative effects of viscosity and heat
conduction (see p, 322 of Landau and Lifshitz (1959», Because of this similarity, we refer
to surfaces bearing jump discontinuities in the displacement gradient in an e1astostatic field
as "equilibrium shocks",

Not all elastic materials arc capable of sustaining deformations with equilibrium
shocks. Those that do have this capability are sometimes called unstable materials; they
lead to differential equations of equilibrium that necessarily fail to be elliptic at some
deformation (Knowles and Sternberg, 1978). This in turn leads to a massive loss of
uniqueness of solution for the boundary value problems of e1astostatics. suggesting the
need for additional constitutive assumptions that will select from among the many possible
equilibrium states that one which is preferred by the body, One such additional constitutive
postulate asserts that the material is conservative at all of its particles, including those on
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shocks. so that tht: body pn:fas the t:quilibrium state which renders the appropriate enagy
functional an absolutt: minimum. With this assumption in force. the driving traction acting
on any equilibrium shock necessarily vanisht:s (Abeyaratne. 1983: Gurtin. 1(83). the con­
ventional balance between work and magy is presaved. and no dissipation takes place. [n
this conservative setting. elastostatic fields with shocks have recently received much ana­
lytical attention (James. 1979. 1981. 1986: Gurtin. 1983; Ericksen. 1975; Abeyaratne. 1980:
Ball and James. 1987; Fosdick and James. 1981; Fosdick and MacSithigh. 1983: Silling.
1988).

In two recent papers (Abeyaratne and Knowles. 1987a. b). we have discussed an
example in order to illustrate an alternative constitutive postulate. The problem treated in
these papers involves a finite. plane deformation of an infinite medium containing a circular
cavity. A uniform circumferential traction is applied to the cavity wall. and the displacement
is required to vanish at infinity. For the class of incompressible. isotropic elastic materials
considered. the resulting twisting deformation may exhibit a circular equilibrium shock
concentric with the cavity. In quasi-static motions of the body involving such equilibrium
states. the relationship between the applied torque and the twist at the cavity wall-i.e. the
macroscopic response - is in general hysteretic. We showed that if a certain maximum­
dissipation postulate is used as the supplementary constitutive assumption. the manoscopic
response mimics that associated with rate-independent elastic-plastic behavior.

Our purpose in the present paper is to discuss supplementary constitutive models for
elastic lields capable of sustaining equilibrium shocks in more generality. The principal new
feature introduced here is a "kinetic relation" analogous to those arising in microstructural
models of plastic behavior formulated in terms of internal variables (Rice. I\)70. 1\)71.
IlJ75). In our circumstances. this relation takes the form of a constitutive law connccting
the driving traction acting on a moving shock with the shock velocity during a quasi-static.
isothermal motion. We show that appropriate choices of the kinetic relation lead to visco­
plastic macroscopic response. and we reeover conservative (minimum-energy) response as
well as rate-independent elastic plastic behavior as special or limiting cases.

When there is an equilibrium shock in the body. the kinetic law governs its evolution.
However a separate criterion an initiation or nudeation criterion is required in order
to signal the initial appearance of the shock. This too will be discussed in the following.

For simplicity. we work here in the context of a one-dimensional model for extensional
deformations of an elastic bar. Our selting is thus essentially that of Ericksen (1975) in his
discussion of one-dimensional deformations wi th strain jumps. except that we consider bars
the cross-sectional area of which varies with position. The special case of the IIl1ijim/l bar
turns out to be exceptional in certain important respects.

Arter introducing in the following section the class of elastic materials to be considered.
we investigate equilibrium states with a single shock in Section 3. Sections 4 and 5 are
concerned with the energetics ofquasi-static. isothermal motions of the bar and the admissi­
hility of such motions according to the second law of thermodynamics. We introduce the
notion of a kinetic relatilln as well as a shock initiation criterion in Section 6. and in Section
7 present examples to illustrate the possibilities ofrered hy the theory.

An approach of the type put forward here may have application to the modeling of
the mechanical response of shape-memory alloys (Delaey ('/ al., 1(74). to continuum
descriptions of the efrect of the presence of a "damaged phase" on the hehavior of solids.
ami to transformation toughening in ceramic composites (Budiansky ,,/ al.. IlJXJ).

2. PRELlMI~:\RIES

Consider a bar composed of a homogeneous clastic material, which in its reference
contiguration occupies the interval [0, L]. Let x denote the coordinate of a generic point of
the bar in this cont1guration. If the reference cross-sectional area of the bar at x is A (x) > O.
it is assumed that A E C~[O. L]. We also assume that A(x) increases monotonically with x.
so that

A'(x) > O. 0 ~ x ~ L. ( I )
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We shall show later that the special case of the uniform bar (o4'(x) == 0) is exceptional in
certain respects; it is temporarily excluded from consideration.

A deformation of the bar is characterized by an invertible mapping

y == x+u(x), 0 ~ x ~ L (2)

which subjects the particle at x to a displacement u and carries it to a new location y. There
is no loss of generality in taking the left-hand end of the bar to be fixed; if J denotes the
elongation of the bar

lI(L) == <5, 1/(0) == O. (3)

It will be necessary in the following to consider displacement fields which are less than
classically smooth. and accordingly we allow for the possibility that. although u is con­
tinuous on [0. LI. there is a number SE [0. LI such that (i) u is continuously differentiable
on [0. s] + [so L]. (ii) u is twice continuously differentiable on (0. s) + (s, L). and (iii) u' suffers
a finite jump discontinuity across x = s. The strain c at a particle x '" s is defined by

f:(X) = lI'(x) > - I. 0 ~ x ~ L. x '" s; (4)

inequality (4) I assures the invertibility of mapping (2).
Let /1(x) be thc nominal stress field in the bar. Equilibrium in the absence of body

forces requires

/1(.\)A(X) == F = constant. 0 ~ x ~ L; (5)

F denotes the force in the bar. Clearly. /1 E e![O, LI.
The material is characterized by an elastic potential W the value of which is the strain

energy per unit reference volume. We assume that W is defined on ( - I. (0) and that it is
twice continuously dilren:ntiable there. The stn:ss response function of the bar 0-(/:) is given
in terms of rv by

d(/:) == W'(/:). - I < c < 00

so that by (5). the stress at x is

d(/:(x)) == FIA(x), 0 ~ x ~ L. x", s.

(6)

(7)

If F is given. the lorc(' prohft'f11 consists of finding a displacement field u of the requisite
smoothness conforming to (7). (4) and (3h If i5 is given, the e/0f/9a/ion problem requires
the determination ofa constant Fand a displacement field 1/ satisfying (7), (4) and (3). We
shall be concerned only with the force problem.

From a thermodynamic viewpoint, the present analysis assumes that conditions are
isothermal. The elastic potential W coincides with the Helmholtz free energy of the material
at the given temperature. while the associated Gibbs free energy G expressed in terms of
strain is

G(r.) == W(/:)-d(r.)r., -I < r. < ::1:;. (8)

In this paper we restrict attention to materials the stress response function u(r.) of
which first increases with increasing c. then decreases. and finally increases again (Fig. I).
Specifically we suppose that there are positive numbers r..\1 and I:m such that o-'(I:M ) ==
d'(/:",) == O. d'(I:) > 0 for -I < I: < C.lf • 0"(1:) < 0 for Clf < C < Cm' and U'(f;) > 0 for Cm < c.

Moreover

al/=O'(I:\f»O. a",=d(c",) >0, u(x:)==oo, u(-I)=-oo. (9)
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Fig. I. Stress-strain curve.

Note that these materials are of "Baker-Ericksen type" in the sense that U(r.)E > 0 for E ,:p O.
For our purposes. it is sullicient to consider only tensile stresses. so we restrict attention
henceforth to (1 ~ O.

Although U(/:) is not invertible on (- 1.(0). its restrictions to certain subsets of this
interval do have inverses. and these play a m,~or role in the analysis to follow. Let 1:1. £2, i J

be the functions inverse to the restrictions of u(c) to the respective intervals (-I. EM].
[I:". cm], and [I:m, (0) ; these inverse functions are defined on (- rf:; .11,,]. [11m• (1..,] and [11m• (0),
respectively. Each function I:j is continuous on its domain of definition. and is continuously
differentiable on the interior of that domain. Finally, let (I .. be the unique number in the
interval (11m • 0",\1) for which the two shaded regions in Fig. I have equal areas. In terms of
the Gibbs free energy

( 10)

a,. is the Maxwell stress of the material.

3. EQUILIBRIUM STATES

If E(X) is a solution of (7) of the requisite smoothness, it follows with the help of
inequality (I) that l:{x) ,:p em, E,lt for all x in (0,5) + (5, L), and that in fact

O~X<s

s<x~L
(II )

where p, q = I, 2. or 3. Moreover, for 0 ~ x < s, F/A(x) must lie in the domain ofip • while
for s < x ~ L it must lie in the domain of I:q • On using inequality (I) and the definition of
the inverse functions i" one can show that this is equivalent to requiring

( 12)

where the Spq's are sets in the (s, F)-plane defined as follows:

5 I I = {(s. F) I0 ~ s ~ L, F ~ a,uAm}

522 = {(so F) I0 ~ s::::; L. (1mAII::::; F::::; allAm}

5}} = {(s. F) I0 ::::; s ::::; L. amAl1 ~ F}
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512 = {(s.£) I0 < s < L. umAw ~ F~ {fMA m }

5:1 = {(S.F) 10 < s < L. (7",A(s) ~ F~ (7MA",}

523 = {(So F) I0 < s < L. umA.W~ F ~ uMAm}

53:= = {(S.f) I0 < s < L. UmA,I.1 ~ F ~uMA(s)}

531 == {(s.F) 10 <5 < L. (7",A(s) ~ F~(7MA(s)}

513 = {(5. F) 10 < 5 < L. (T",A,w ~ F ~ O"MA m }.

1015

(13)

Conversely. if (5. F) E 5pq for some p. q. then expression (II) is a solution ofeqn (7). Observe
that the sets 52!' 51!' 5!3. 513 are nonempty ifand only if the constitutive law and the taper
of the bar are such that

( 14)

For a given material. inequality (14) will certainly be valid if the taper in the bar is slight
enough; we assume throughout that inequality (14) holds.

For a given F. aU solutions of the force problem (7). (4). (3) 2 may now be found by
integrating (II). They are

where

u(x) = Urq(x; F. s). 0 ~ x ~ L. (s. f) E Spq, p. q = t. 2. 3 (15)

U,,,/(x; F. s) =
{

f' i;p(l'IA(~» d~, 0 ~ x < s
In

IS i:"UIA(~» d~+ f' 1;,,(F/A(~» d~,In J. s<x~L.

(16)

For p = q, (15) and (16) yield the special solutions

(17)

which are independent of s and classically smooth. On the other hand, for p ::F q, (15) and
(16) provide six one-parameter families of solution to the force problem, with parameter s.
The strain for 0 ~ x < s is associated with the pth branch of the stress-strain curve, while
that for s < x ~ L is associated with the qth branch; the discontinuity at x = s is called a
"(p, q)-shock".

According to (i3) and (14), there exists at least one solution u(x) to the force problem
corresponding to every given value of F. If either 0 ~ F ~ O'",A m or F ~ (TMA M , this solution
is unique and it is smooth. However, for values of force in the intermediate range
O"mAm < F < O'.\,A.\I. there are infinitely many solutions.

Observe from (16) and (17) that as the shock recedes to either one of the two ends of
the bar, each weak solution "merges" with one of the smooth solutions

lim Up,,(x; F, s) = U,,(:'; f) }.-0
lim Upq(x; F, s) = Up (x ; F) .
• -1.

(18)

This suggests that the definitions of all of the Upq's, as functions of s, be extended to s = 0
and L by setting

U,.,,(x; F.O) = U,,(x; F) }

Ul'q(x; F. L) = Up(x; F).
(19)
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Finally, one can verify that Upq(';F,s,) and U",A';F,S2) are distinct whenever
(p, q) #- (m, n), 0 < s I < L, and 0 < S2 < L:

Upq (';F,s,)#-U"",(';F,S2) if (p,q)#-(m,n), O<s,<L, 0<s2<L,

(s"F) ESpq , (S2,F) ES",", (20)

We turn next to the relation between the force F and the elongation <5, which we call
the macroscopic response of the bar. By (3) I, (15) and (16), these quantities are related by

where

<5 = dpq(F, s), (s, F) E Spq, p, q = I. 2. 3 (21 )

(22)

It can be shown that, if p #- q, dpq(F, .1') is a monotonic function ofs for each fixed F. The
macroscopic response corresponding to anyone of the smooth solutions is independent
of .1':

(23)

For each (p, q), (21) maps the set 5pq of the (.I', F)-plane onto a set (fpq in the (6, F)­
plane:

(fll = {(6,F)Ic>=d ,(F), F~G'I(A",}

(f22 = {(c>, F) I () = d 2(F). G'",A M ~ F ~ G'MA",}

(fJJ = {(6, F) I J = dJ(F), C1",A,\f ~ F}

(f12 = {(J,F)!d I2 (F,L) ~ c> ~ ddF,O), C1",A.\{ ~ F~ C1MA",}

(f21 = {(e5, F) Id 2 ,(F,O) ~ e5 ~ d 2 ,(F, L). G'",A(s) ~ F ~ G'''fA",}

(f2J = {(e5,F)ld 2J (F,L) ~ e5 ~ d 2J (F,O), C1m AI( ~ F~ G',~fA",}

(fJ2 = {(e5,F) Id J2 (F,0) ~ e5 ~ d J2 (F, L), C1",A H ~ F ~ G'MA(s)}

(fJI = {(c>, F) IdJl(F,O) ~ 6 ~ dJI(F, L), G'",A(s) ~ F ~ G'MA(s)}

(fIJ = {(c>,F) Id I3 (F,L) ~ e5 ~ dIJ(F,O), C1",A.H ~ F~ C1MA",}. (24)

Sketches of the scts (fpq are shown in Fig. 2. Observe that (f I I and (f 13 are curvcs with
positive slope, while (f22 is a curve with negative slope. Note also that (fll' (f22 and (fJJ arc

F

<rM A Mt----------"7'I

0'-- --=.8

(a)

F

0'-- ..::8

(b)

Fig. 2(a. b). Sets if"., in the force-elongation plane: (a) if". if". if 11 ; (0) lElI.lE".lE".
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O"MAM"i----------"J
O"MAm~-__r_-===r;:::r=Fr/

0'-- -=8

(c I

OL- ...:::8

ldl

Fig. Zlc.d). Setslf"" in the forcc~longation plane: Ie) lf~2.lfH.lfJ2: (d) lfn .Ir".lr2)'

F

0'-- -=8

Ie I

F

0'-- ~8

(f)

not connected. The sets (fp~. p :F q. correspond to various regions linking these curves. The
dashed curves in these regions arc curves of constant s. For p :F q. the mappings sp~ -+ (fp~

arc one-to-one; this is obviously not the case when p = q.
In summary. for sulliciently small and sufficiently large values of the force F. the

force problem has a unique solution; this solution happens to be smooth. However. for
intamediate values of F, we encounter a major breakdown of uniqueness. In fact, in the
intermediate range of F, there arc multiple solutions even if the pair (15. F) is prescribed.

4. DISSIPATION, SHOCK DRIVING TRACTION, ADMISSIBILITY

We now turn our attention to quasi-static motions of the bar in which, at each instant
t, the displacement field u('. t) corresponds to one of the equilibrium states constructed in
the preceding section. Let F(t). to ~ t ~ t .. be a given continuous. piecewise continuously
differentiable force history. Suppose first that F(t) ~ amA", for all t in [to. tl]' Then by
(I J) and (17). u(x. t) is necessarily given by the smooth field

U(X,t)=UI(x;F(t)). O~x~L, to~t~tl (25)

associated with the first branch of the stress-strain curve. Nex.t. suppose that F(t) ~ a,\,A",
for all t. Then (1 J) and (17) yield

(26)

and again the field is smooth. Finally, assume that a",A m ~ F(t) ~ a,\fA,/ for alit in [to, td.
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Then u(x. t} must have the form

(27)

To begin with. we assume that:

(i) 1'(/) and q(/) are piecewise constant on [1 0.1 tl. each taking one of the values I. 2. 3
there. with p(t) ::f:. q(l);

(ii) s(l) is piecewise continuous on [roo ttl;
(iii) (s(t). F(/» ESpit1q{t) for 10 ~ t ~ t,.

The requirement p(t) ::f:. q(t) does not preclude the occurrence of smooth fields for forces
F(t} in this intermediate range; such fields occur when either s(t) == 0 or L.

For quasi-static motions of the form (25) or (26). the assumed smoothness of F(t)
and representations (17) guarantee that u(x.·) is continuous and piecewise continuously
differentiable on [to./tl for each x. In order to discuss the more complicated issue of the
smoothness in time of motions described by (27). it is convenient first to introduce the
notion ofa transition instant: an instant t.E(to.t l ) is a transition instant if (p(t.-).
q(t. -» ::f:. (p(t. +). q(t. +». At a transition instant. the branches of the underlying stress­
strain curve involved in deformation (27) change from the p(t - )th and q(t - )th to the
p(t + )th and q(t+ )tho

It is natuml to require that u(x.·) as given by (27) also be continuous on [roo t I] for
every x. 0 ~ x ~ L. Let t. be in (tl). t I). and assume that u(x• •) is continuous at t•. Suppose
first that t. is not a transition instant. Then p(t-) = p(t+) == 1'. q(t-) == q(t+) == q. so
from (27)

for every x in [0. L]. Now I' ::f:. q. and definition (16) of Upq shows that (28) cannot hold
under this circumstance unless

s(t.+) =.1'(1. ) if I. is not a transition instant. (29)

Thus s(t) is necessarily continuous at all times except possibly at transition instants.
Now suppose that t. is a transition instunt. Let p(r. -) == 1', q(t. -) == q. p(t. +) == m.
q(t. +) == n; by (27). continuity of u(x, .) at t = t. then implies that

Upq(X; F(t.), s(t. +» - Unr,,(x; F(t.),s(t. - » = 0 (30)

for all x in [O,L]. Since I. is a trunsition instant, (p,q)::f:. (m,n), and (20) shows that (30)
cannot hold unless at least one of the numbers s(r. +), s(t. -) takes either the value 0 or
the value L. More detailed examination of (30) shows that one of the following four
mutually exclusive possibilities must hold:

s(t.+) = s(t.-) = O. and q(t.+) = q(t.-) }
if

s{t. +) = s(t. -) =: L, and p{t. +) =p(t. -) .
t IS a trans-

s(t.+)=L,s(t.-)=O,andp(t.+)=q(t.-) .~ .
Itlon Instant.

s(t. +) = o. s(t. -) = L, and p(t. -) = q(t. + )

(3Ia)

(3Ib)

(3lc)

(3Id)

Thus (29) and (31) are necessary for the continuity of u(x.·) at an instant t. in
(to.t.); if either t. = 10 or t. = t lo (29) and (31) continue to be necessary, provided the
appropriate + or - is deleted in the arguments of s. I' and q. Moreover. one can show
that. in the presence of the assumed smoothness of F(t). (29) and (31) (or their modified
versions when t. is an end-point of [to. J.]) are sujJicient for the continuity of u(x,·) at
1= t", as well.

The argument above shows that discontinuities in s(t) can only occur at transition
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instants t.; if there is such a discontinuity, the shock x = s(t) recedes to one end of the bar
as t - t. - and then advances into the bar from the other end as t increases from t•. When
s(t) is continuous at a transition instant t., necessarily s(t.) = 0 or L. Thus a transition
from a discontinuous strain field involving branches p and q of the stress-strain curve to
one involving branches m and n, with (p, q) #- (m, n), always takes place through a smooth
field. A further consequence of conditions (29) and (31) is that a shock cannot emerge
instantaneously from a smooth field at an interior point of the bar. Observe that these
restrictions on the motion x = s(t) of the shock arise from purely kinematic requirements,
together with the assumption that the bar is strictly monotonically tapered. Further restric­
tions on the shock motion will arise later.

Finally, we require that s(t) should be piecewise continuously differentiable between
every pair of successive transition instants. This will assure that u(:c,') is piecewise con­
tinuously differentiable on [to, til. A regular instant during a quasi-static motion is a time t
at which F(t) exists and. if the motion is of the form (27). s(t) exists and p(t) and q(t)
are continuous.

Figure 3 describes an example in the (x, t)-plane for which the shock history involves
transition instants of each of the four kinds listed in (3Ia)-(3Id). The encircled numbers
in Fig. 3 refer to the branches of the stress-strain curve appropriate to the two sides of the
shock at various times.

The elementary quasi-static motions (25). (26) and (27) may be linked together on
successive time intervals [to. ttl. [t 1, t21. and [12. tJI to form a compound quasi-static motion
on [to, t,l, provided the resulting displacment II(:C.') is continuous on [to, t J] for every x.

Next we consider the ('f/('Tf/etics of a quasi-static motion. The total strain energy stored
in the bar in an equilibrium state with displacement Upq(x; F,s) is

Ep./(F.s) = f: W(I:,,(F/A(x»)A(:c) dx+rW(I:q(F/A(x)))A(x) dx.

p, Cf = 1,2,3. (s, F) ESp,,' (32)

During a quasi-static motion of the form (27), the energy stored in the bar at time t is

(33)

At a regular instant during this motion, we define the rate of dissipatiof/ d(t) to be the
ditrerence between the rate of external work and the rate of increase of stored energy

d(t) = F(t)b(t) - E(t) (34)

x =s (t)

x

Fig. 3. Ellamplcs of the four types of transition instants I. in (31).
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where. by (21). the elongation <5(t) of the bar is

<5(t) = ~P(lIq(r)(F(t).s(t». to ~ t ~ t l

and ~pq is given by (22). A direct calculation based on (32)-(35) yields

d(t) = [[W(e)-6"(e)e]]~A(s(t»s(t)

(35)

(36)

for each regular instant during the motion. Here [[g]] denotes the jump at x = s(t) of
function g(x) : [[g]] = g(s(t) +)- g(s(t) -). It follows from (36) that d(t) = 0 if the motion
happens to be smooth at time t. so that all jumps in (36) vanish. In general. however.
d(t) #- 0 for motions of the type (27). For motions of the type (25) or (26). the dissi­
pation rate of course vanishes identically.

Let f(t) be defined by

f(t) = [[ W(e) - 6"(e)eJr. to ~ t ~ t I (37)

and by f(t) = 0 for motions of the type (25) or (26). Since by (34), (36) and (37), at a
regular instant

t = Fe> + (-fA(s».s (38)

it follows that onc can vicw -/(t) as a traction applicd by thc shock on the bar. or
equivah.:ntly, /(t) as a traction applied by the bar on the shock. The general notion of a
"thcrmodynamic forcc" or "driving forcc" on a "dcfect" was introduccd by Eshclby (1956).
Equation (37) is a spccial case of a formula for the force on a phase boundary given by
Eshclby (1970) and discussed by Rice (1975); sec also Knowles (t 979). We refer to f as
the "shock dril'illlJ tractioll". Observe from (8) and (36). that the shock driving traction
coim:ides with the jump in the Gibbs free energy across the shock

/(t) = [[G(/:(x, t»JJ ~. (39)

On using (10), one obtains from (39) the following expression for the shock driving traction:

f(t) = J;,(r)q(/)(6"(/»

where aU) is the nominal stress at the shock

a(t) = F(t)jA(s(t»

and functions J~q are determined by the material; they are given by

(40)

(41 )

(42)

The following propcrties of functions J;,q will prove to be useful. First, note from (42)
that

Second. ditTercntiating (42) yields

{

>o. am ~ a ~ a,\(. P > q

f~q(a) = f.p(a) - f.q(a) = O. am ~ a ~ aH. P = q

<0. am~a~a.\f. p<q.

(43)

(44)
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Next. on recalling the properties of the inverse functions f r • one can readily verify from
(42) that

131(a",) < O. 131(aJ = O. 131(a.w) > O}
IZI(a\() = O. Ida",) = o. (45)

Integration of (44) with the help of (45) then gives the following useful alternative formulas
for f"q:

In (a) = 1q

{i J (r) - i Z(r)} dr.
,,~

IJ 1(a) = 1" {iJ(r) - i 1(r)} dr.
",

1""
IZI(a) = -" {iz(r)-i,(r)} dr.

(46)

the other Ipq's are related to these through (43). Observe from (46) that Ill. In and 121 are
monotonically increasing functions on (0'",. aM)' Moreover. lIz is nonnegative on its domain
of definition while Iz I is nonpositive; on the other hand IJ 1 changes sign once:

{> O. a", < a ~ aM

IlZ(O') =o. a =a",r0,
a .. < a ~ aM

1'31(0') =0. a =a< (47)

< O. am ~ a < 0',.

{=o a =0'.\(
IZI(O') <0: am ~ a < a,\(.

A quasi-static motion is said to be admissihle if the rate of dissipation is nonnegative

(48)

On adapting the thermodynamic arguments given by Knowles (1979) to the present one­
dimensional context. one can show that (48) is equivalent to the Clausius-Duhem ineq uality
when the temperature is constant in space and time. Observe that (48) holds with equality
if the shock is stationary or if the shock driving traction vanishes; the latter alternative
occurs if and only if either (i) the field is smooth or (ii) (P. q) = (3, I) or (1,3) and the stress
at the shock is the Maxwell stress. All motions of the type (45) or (47) are trivially
admissible. In general, (48) is to be viewed as a restriction on allowable quasi-static motions.
Note from (35) and (48) that a quasi-static motion is admissible at an instant I if and only
if the Gibbs free energy of a particle at the shock front does not increase as the particle
crosses the shock. In the following section. we investigate the consequences of admissibility.

5. CONSEQUENCES OF ADMISSIBILITY

Consider an admissible quasi-static motion of the form (27) in which p(t) == P = con­
stant. q(t) == q = constant for to ~ I ~ 11' If, for example. p = 3. q = I, then by (44), (36)
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and (43),·admissibility requires that

.):(t+)~0 if a(.t»(TC}
s(t+) ~ 0 if a(t) < (Te

o'(t+ )s(t+) ~ 0 if au) = (T,

(49)

where a(t) == FU)/A(s(t» is the stress at the shock. The curve in ~31 given by F = (TeA(s).
£5 = 6 31 «(TeA (.1') • .1') is called the 3. /-AfaxlI'ell clIrre; points on this curve correspond to equi­
librium fields in which the stress at the shock coincides with the Maxwell stress.

Every quasi-static motion determines a path in the (£5, F)-plane. For the motion con­
sidered above. this path lies in the set ~3 1 (Fig. 2). and-through (49)-admissibility
restricts the possible directions of the path. Figure 4(a) illustrates the permissible directions
of departure of such a path from various points in ~ 3I' The dashed curves in the figure
represent lines s(t) = constant; for motions the paths of which lie along a curves = con­
stant. there is no dissipation. The same is true for motions the paths of which lie on the
Maxwell curve.

Similar considerations apply to motions of the type (27) for other values of the pair
(p, q). For p = I. q = 3, there is also a Maxwell curve. but for the remaining possible choices
of (p. q). this is not the case. Figures 4(b)-(f) show the admissible directions for the
remaining choices of (p. q). In Figs 4(a) and (b) and hereafter, we assume that

(50)

These inequalities. which imply (14), certainly hold for a given material if the taper of the
bar is slight enough.

Admissihle directions for compound motions can also he read 011' from Fig. 4.
From Fig. 4(a). it is clear that transitions of the form (£11 -+ (£\1. (£11 -+ (£11. (£'J-+

(£11. (£\1 -+ (£\1 are all possible; similar inferences may be drawn from Fig. 4(b). The
situation is different. however. for admissible motions that involve branch 2 of the stress­
strain curve. For example. Fig. 4(c) shows that. while the transition (£~ I -+ (£ II is admissible.
the reverse transition is not; similarly. (£~~ -+ (£~I is possible. hut (£~1 -+ (£~~ is not. Parallel
conclusions follow from Figs 4(d) -(f). In general, one can readily show that admissible
quasi-static motions proceed in such a way as to diminish -or at least not increase-the
length of the portion of the bar bearing strains associated with branch 2 of the stress-strain
curve.

The above considerations suggest that the totality ofall equilibrium displacement fields
be divided into two disjoint parts A and U as follows. Let

F

A = {U"q (. J . .1') I (.I'. F) E 5,,,,, P = lor 3. q = I 0 r3 }

U = {Upq ('; F.s) I (.I'. F) E5pq • either p = 2 or q = 2}.

F

(51 )

O"cArn~l--!~r·

CTm AMH~--i--"f--A:-~;p.J

(o )

8
(b)

Fig. ';(a.h). Adl11issihlcdir~'Ctionsin: (a) ll:".ll:1I.ll:1l; (h) ll:".ll:1I.ll:".
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(e) (d)

Fig. 4(12. d). Admissible directions in: (e) ~::. ~.l)' ~n: (d) ~::. ~;J. ~:J'

F

(e)

F

(I)

Fig. 4(e. n. Admissible directions in: (e) If II. If ll' 1f: 1 ; (f) If II. If ::. If I:'

Thus the fields in A correspond to those equilibrium states that involve no strains associated
with branch 2 of the stress-strain curve in Fig. I; U contains all remaining displacement
fields. Consider a compound admissible motion the displacement field ofwhich at the initial
instant belongs to A. Figure 4 suggests that displacement fields for this motion at all later
times must also belong to A. Indeed. if at some later instant the corresponding displacement
field were in U. the length of that portion of the bar carrying branch 2 strains would
necessarily have increased at some earlier time. contradicting the assumed admissibility of
the motion. Thus states in U are not accessible from states in A during an admissible quasi­
static motion; in particular, a motion that commences at the unloaded. unextended state
F = J = 0 can never enter the collection U of states involving strains on branch 2 of the
stress-strain curve.

Let cI(t) be the rate of dissipation in a quasi-static motion at each regular instant t;
the lotal dissipation D associated with the motion is

1'1
D = cI(/) d/.

'.
(52)

It is possible to show that all admissible quasi-static motions the total dissipation of which
is sufficiently large must ultimately enter the collection A, where-in view of the discussion
above-they will subsequently remain. We shall not prove this result here (sec Abeyaratne
and Knowles (1987a, b) for proofs of closely related propositions).

One may thus regard the collection A ofequilibrium fields as an aUraclor for admissible
quasi-static motions; the set U may be thought of as unobservable. From here on.
we shall be concerned only with motions through equilibrium states that can be reached
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admissibly from the state F = <5 = 0; as a result. we need no longer consider states that
include strains associated with branch 2 of the stress-strain curve.

In reaching the conclusions described above. the fact that the cross-section of the bar
is tapered. rather than uniform is crucial. For a uniform bar. the implications ofadmissibility
are much weaker than those described above. The distinction can be appreciated with the
help of Fig. 5. which shows the sets ~pq for the uniform bar. Observe from the figure that
the sets ~II' ~c~ and ~}} corresponding to smooth strain fields are now connected. each to
the next. in contrast to the corresponding sets for the tapered bar as shown in Fig. 2 or Fig.
4. Thus for a tapered bar. one cannot move quasi-statically from states in ~ II to states in
~ c~ by utilizing smooth fields alone; such a transition would demand the presence of fields
with equilibrium shocks. which-by the discussion above-is forbidden when admissibility
is imposed as a requirement. On the other hand Fig. 5 shows that. for the uniform bar.
one can construct quasi-static motions involving only smooth-and therefore trivially
admissible-fields that pass from states in ~II to states in ~cc. Thus while admissibility
forces the collection U of equilibrium states involving branch 2 to be inaccessible' and
transient in the presence of sufficient dissipation in the case of the tapered bar, it does not
deliver the corresponding results for the uniform bar.

6. KINETIC RELATIONS AND SHOCK INITIATION

The specification of either the force history F(/) or the elongation history c5(t) during
an admissible quasi-static motion is not sutl1cient to determine the motion uniquely unless
thc field is smooth at cach instant. This suggests that the constitutive characterization of
thc material must be supplementcd if the responsc is to be dctcrminatc when equilibrium
shocks arc present.

In thc macroscopic Fl5 relations (21 )-(23) pertaining to equilibrium statcs with shocks.
thc shock location s may be vicwcd as an "intcrnal variablc". Indeed. thc formalism uscd
in intcrnal variablc theorics of plasticity such as those developed in Rice (1970.1971,1975)
has a counterpart in thc prcscnt context. Bccause wc do not necd this formalism here, we
do not discuss it in detail (it has becn described in a relatcd setting in Abeyaratne and
Know1cs (19X7a, b». A common ingredient of such microstructural thcories of inelastic
behavior is an evolution law. or "kinetic relation", relating the timc ratc of changc of the
internal variable to the corresponding "thermodynamic forcc", We adopt this point of view
here by postulating a relation between the shock driving traction I(t) of (37) and the shock
velocity '\'(/) that must hold during a quasi-static motion, This relation is determined by the
material and is regarded as given.

F

8

F

.,. ..At-"'<-7T"~-.---=---I

.,.cA t--PL.:f:..:....,J'-'f..,~ofo'-~

t'.. L t'mL

FOR (f- t ,. INTERCHANGE 5-0 ANO S'L.

F

8

FOR ("'2 AND (f- 32' INTERCHANGE 5-0 AND Sol.

Fig. 5. Sets IfN and admissible directions for the uniform bar.
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Suppose we have an admissible motion of the fonn (27). Recall relation (36) between
the shock driving traction I(t) during such a motion and the stress at the shock Ii(t). and
let

(53)

be the maximum and minimum values of the material functions I pq introduced in (42).
For each p. q = I. 2. 3 with p # q. we assume there is a given function Vpq defined on
(11/pq . Mpq ) x [0. L] and such that. between successive transition instants during the motion.
the kinetic relation

(54)

holds. If the functions VpqU: s) are independent of s. we say that the kinetic relation is
h011/o.l!eneous: we assume this to be the case henceforth.

We now impose on each kinetic response function V"q the requirement that

by (48) and (54), this assures that all quasi-static motions compatible with the kinetic
rdation arc admissible.

We also require that. for each p, q with p # q

V",.(f) = - V"" ( -f) for -Al"" < 1< -"',..,. (56)

(Note that. by (33) and (53),11/1/" = - MI"!") The motivation for (56) lies in the fact that the
kinetic response functions VI'" arc to depend only on the material and not on the geometry
of the bar under consideration. In particular, they must apply in the case of uniform bars.
for which (3, I)-shocks and (I, 3)-shocks arc mirror-images of one another if the stress at
the shock is the same for both.

Since the shock driving trm;tion f(t) during the motion is rdated to the stress at the
shock a(t) by (40). the kinetic rehltion (54) may be expressed in terms of Ii instead off:

(57)

where the material function t'"" is defined by

(58)

By (40) and (43). properties (55) and (56) of the V",,'s yield corresponding properties of the
l'1'1,·S

(59)

(60)

Retwecn two successive tr~lOsition instants, p(t) and q(t) arc both constant: p(t) :; p,
q(t) :; q: for a force-controlled motion in which F(t) is given. (57) is then a differential
equation governing the location x = s(t) of the associated (p, q)-shock.

For definiteness. consider a program of loading in which the given force history F(t).

o ~ t ~ T. begins at F(O) = O. so that initially i5(O) = 0 as well. and suppose that F(t)

increases with t to a final value F( T) > (J \,A". To describe the possible quasi-static motions
associated with F(t), we shall trace the corresponding force-elongation histories in Figs
6(a) and (b). which contain the information in Figs 4(a) and (b) pertaining to equilibrium

9... .H: lO-o
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"mA", ,

I
8 1 8

0
(b)(0 )
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"'"Am~1--:J~-,-:::.:::;:::;;;;P~

Fig. 6. Possible loading paths in: (a) If" ; (b) If 1\'

states with (3,1)- and (1.3)-shocks. (Recall from the preceding section that states with
either p = 2 or q = 2. or both. can fIC/'cr be reached admissibly during a force history of
this kind. so that Figs 4(c)-(1') need not be consulted.) Reference to Fig. 6 shows that. as
F(/) increases from zero to the valueamAmat, say. time II. the associated quasi-static motion
is necessarily smooth and of the form (25). During this period. the force elongation
relation corresponds to the curve OA in either Fig. 6(a) or (b). and according to (21 )(23).
it is given by

i5(t) = 6. 1(F(t»). (61 )

As F(t) increases beyond am A,.,. equilibrium states involving <3. I)-shocks become available
(Fig. 6(a»). but as indicated by the arrows in the figure. none can be reached admiss­
ibly until the time. say I~. at which F(/~) = a,A,.,. Thus on the time interval [/1./~1. the
motion is of the form (27). with I/(X./) = U ll (x; 1"(1).0) = UI\(x; F(t).L) = Ut(x;

F(/». the displacement field remains smooth at each instant, (61) remains in force, and the
force-elongation eurve continues along the arc ABC. For I> t 2 and F(t) > aeA,." the
situation changes. Let F(t J) = GeA.\t; when t 2 < t < t.J, there are two alternative possibilities,
each consistent with admissibility: either the deformation continues to be smooth at each
instant. with u(x. t) = U I (x; F(t». or a (3. I)-shock is initiated at the end x = 0 of the bar
at a certain instant t. ~ 12 and begins to advance into the interior in accordance with kinetic
relation (54) (or (57», In the former event, (61) continues to hold. and the force-elongation
curve is ABCD (Figs 6(a) and (b». However. if a (3, I)-shock forms. then the F-J curve
departs from ABCD at a point 0. (Fig, 6(a». with

(62)

Here s(t) is the location of the shock at time I > I.; it is given by the solution of the
differential equation (57) with p = 3, q = I, subject to the initial condition .1'(1.) = O. If a
shock does not form and the first of the two above alternatives occurs. the force. having
generated only smooth deformations, eventually attains the value F(t,) = 0'"...1\1, after which
anyone of Ihree mutually exclusive types of admissible response histories may occur. First.
the fields may remain smooth, with c5(t) = 6. ,(F(/»; second, a (3. I)-shock may emerge at
x = O. after which (62) will take over; third, it is now possible to create a (I, 3)-shock at
x = L. If this third possibility occurs, say at time I ••• the force-elongation curve will depart
from ABCDE at 0 .. (Fig, 6(b». and the F-c5 relation will be

(63)

instead of(61).
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The kinetic relation alone does not determine whether or when a shock forms during
the above loading program or. if so. whether it is a (3. I)-shock at x = 0 or a (1, 3)-shock
at x = L. It is therefore necessary to establish in addition a criterion for shock initiation. If
a (3. I)-shock forms at x = 0 at time t. (corresponding to the point 0. in Fig. 6(a», then
the strain at the particle x = 0 willjump from a value associated with branch I of the stress­
strain curve to a value on branch 3; for brevity. we say that the particle has undergone a
transformation from "phase I" to "phase 3" at time t•. The same can be said of the particle
x = L if a (I. .3)-shock emerges from x = L at time t•• (point 0 •• in Fig. 6(b)). We now
adopt a specific criterion for such shock-initiating-or "spontaneous"-phase I ~ phase
.3 transformations: the particle x = x. will spontaneously transform from phase I to phase
.3 at time t. if the stress

u(x•. t.) ~ 1:~1 and u(·. t.) has a local maximum at x•. (64)

Here the "transformation stress" 1:.\1 is determined by the material and presumed to be
known. (The alternative to a spontaneous transformation occurs when a particle changes
phase due to the passage of a pre-existing shock through that particle.) For the reverse
transformation. we similarly postulate that the particle x. will spontaneously transform
from phase .3 to phase I at time t. if

a(x•. t.) ,,:; 1:", and a('. t.) has a local minimum at x. (65)

where the reverse transformation stress 1:", is also given. Admissibility requires that 1:.11 and
L", satisfy

(66)

Since the bar is monotonically tapered. the maximum stress at each instant occurs at the
small end x = O. the minimum at x = L. Thus shocks corresponding to phase I ~ phase 3
transformations can only he initiated at x = O. and those corresponding to phase 3 ~ phase
I transformations only at x = L.

We remark that the shock initiation criterion introduced above can be alternatively
formulated in terms of critical values of shock driving traction. rather th.ln in terms of the
critical values L I1 and 1:", of stress at the shock. In the present one-dimensional context, no
advantage is gained by using this formulation. so we omit it. In higher dimensional settings,
hmH:n:r. it is likely that the alternative formulation is essential.

When applied to the loading program described in detail above. our criterion singles
out a ddinite response history from among the possibilities listed there: as t increases from
zero. the equilibrium fields remain smooth and the force-elongation relation remains given
by (61) until the instant t. at which u(O. t.) = F(t.)/A m = L,II' At time t., a (3, I)-shock
forms at x = O. The evolution of the shock location s(t) is then controlled by the differential
equation (57)1 with p(t) = 3. q(t) = I, subject to the initial condition s(t.) = O. Under
suitable restrictions on the kinetic response function v J I to be specified in the following
section. the associated force-elongation response curve, described now by (62), will remain
in the set 5.11 of (3. I)-equilibrium states; it is the curve O.P. shown schematically in Fig.
6(a).

As the force F(t) increases above the level associated with the point p•. the subsequent
response necessarily is smooth and corresponds to branch 3 strains; thus the F-J relation
now becomes

J(t) = UJ(F(t),s(t)) (67)

during the remainder of the loading process.
If the force F(t) is now decreased monotonically to zero from its greatest value F(n.

the ensuing deformation will be smooth. and the force-elongation relation will be given by
(67) until the minimum stress in the bar u(L. t) reaches the lower transformation stress ~",'



103S R, ABHARAT:-:E and J, K, K:-:oWLES

At this instant. the particle x = L undergoes a phase 3 -+ phase I transformation. and a
(3. I)-shock is created at x = L. moving leftward into the bar in accordance with (57). The
F-6 response curve. though again described by (62). will differ from its counterpart during
loading. Once this curve rejoins OABC. the response during the remainder of the unloading
process is that associated with branch I smooth fields. continuing down OABC to the
origin.

Finally. it should be noted that kinetic relations. the structure of which is substan­
tially more general than (5~). could be considered.

7. A SPECIAL CLASS OF KINETIC RELATIONS

We now consider a special class of kinetic response functions J' in (5~) (or I' in (57»,
After investigating some of their properties. we illustrate in detail the visco-plastic nature
of the macroscopic response of the bar to which they give rise. We discuss rate-independent
dissipative response and purely conservative. dissipation-free behavior in the present context
as well.

Since we shall be concerned only with equilibrium states accessible through admissible
motions from the unloaded. unextended state F = 6 = O. we will not encounter strains on
bran<:h 2 of the stress~strain curve. Moreover. for the loading programs to be considered.
the sho<:k initiation criterion of the prc<:eding section will always rule out (I. 3)-shocks.
Thus we shall be con<:erned with kineti<: relation (54) only when pet) = 3. q(t) = l. As a
result. we shall write I"l == I'. 1'/,,/ == l". Itt \I == Jr. 11/ 11 == 11/ throughout the present se<:tion
for <:onvenience. Re<:all from (46). (47) and (53) that m < O. M > O.

7.1. The ki1/etic resp01/se jilllctillff

Guided in part by the form sometimes ascribed to the counterpart of function V in
mkrostru<:tural theories of plasticity (Martin. 1975>. we now make three assumptions
con<:erning the form of V. (i) We assume that there arc numbers m. and A1. such that

and

111 < 111. ~ () ~ M. < Al

V(/) < 0 for 111 < / < 111. }

V(/) = 0 for 111. ~ / ~ M.

1'(/»0 for M.</<M

(6X)

(69)

noting that (69) is consistent with requirement (55) imposed by admissibility. (ii) We assume
that V(f) is continuous on (m, M) and continuously ditTen:ntiable on (m. m.] + [AI•• M).
and that V'(/) > 0 for 11/ < / < m. and for AI. < / < AI. (iii) Finally. we assume that
I'Cn is unbounded as f-+ m + as f-+ AI - : more pre<:iscly. we require that

1'(/) ~ em(/-m) 1 for / sulliciently ncar til }

Vel>;;:: C.I/PI-/) 1 forfsulliciently ncar M
(70)

for suitable <:onstants c." < 0 and elf> O.
Ac<:ording to (i). a (3. 1)-shock will move in the +x-direction only if the shock driving

traction exceeds M •. and in the reverse direction only iff is less than m •. Permitting V(/)
to vanish over the interval [nt •• JI.l will be seen later to allow for the possibility of
dissipation-free unloading and re-Ioading. Assumption (ii) assures that. roughly speaking.
larger shock tra<:tions promote greater shock speeds. The role of property (70) will become
dear as we proceed. A schematic sketch of the graph of V(j) is shown in Fig. 7(a); it is
reminiscent of the relationship sometimes proposed between the driving force on a dis­
location and dislocation velocity (Martin. 1975).
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(oj (bJ

Fig. 7. Kinetic response functions J' and 1'.

By (58). property (69) of V translates into a corresponding property of!'

1'(11) < 0 for II", < a < O',~ }

I'(a) = 0 for a:' ~ !T ~ !Tt,

I'(!T) > 0 for !Tt, < !T < !T.\I

where !T:' and !Tt, arc the unique numbers defined by

Clearly. a,~ and at, satisfy

(71)

(72)

(73)

where !T,. is the Maxwell stress (Fig. I). Clearly. the two transformation stresses:EM and :E",
associated with shock initiation must satisfy

(74)

Property (70) of ~. is readily shown to imply that there are numbers 0';" and a:H. with
a", < a;" < a:' and at, < a'll < a.ll • and such that

l'(a) ~ c",(a-a",) I

l'(0') ~ C.\1 (0'\1 - 0') I

for a,,: < a < a;" }
for 0'.\1 < a < 0'.11

(75)

for suitable constants e", < 0 and CII > O. A schematic graph of I'(a) is shown in Fig. 7(b).
If (fJ stands for the inverse of the restriction of t' to (O'",.a:1 + [!Tt" 0'\1). version (57) of

the kinetic relation may be put in the alternative form

a(t) = F(t)iA(s(t» = (fJ(.~(I». (76)

Note that IfJ has a discontinuity at the origin unless a:' = 0',. :::: at"
Suppose for the moment that we have a motion taking place on the time interval [1 0 • n

and involving a (3. I )-shock located at x = set) at time I. As time increases. the shock
location sell will evolve according to the kinetic relation (57). which in present notation is

.~(t) = daft)) = ['(F(I)1 A (s(t))) , (77)
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Property (75) guarantees that the moving point (s(t). Fit) in the (5. F)-plane remains in
the set S'I corresponding to equilibrium states with (3. I )-shocks. To prove this. it is
sufficient to show that the stress at the shock B(r) = F(t) A(s(tl) never exceeds a" and is
never less than am' Suppose that. at the initial instant to. one has a~\{ < B(to) < a~I' so that
the inequality (75) 2 holds at time tl). We shall show that B(t) < a" for all { in [{q. T]. Suppose
this were not the case. Then there would be instants ( in UI). T] at which B(t) = al/: let (I'

be the infimum of all such instants. Clearly

by the continuity of B(t). Now let to. be the supremum of the set of all times t for
which aU) ~ a'" and (,) < t < t l •• Then for to. < t < (I', we have a'" < BU) < all. so that
inequality (75)z applies. and dB(/» > O. whence by (77). sit) > 0 during this time interval
as well. It follows that we may express t as a function of s: t = 1(5). and thus regard
B(l(s» = 0'(5) as a function of s as well. Then by (41) and (77)

O"(s)A(s)+O'(s)A'(s) = d/ds{F(l(s»} = F(l(s»,',f(i(s»

= FU(S»/l'(d(s». (79)

Let i. = max IFU)I. (I) ~ t ~ T. be the maximum loading rate during the motion. Then by
(75}z and (79)

a'(.1')"/(s) +a(.I')A'(.I') < ()./CII)(lT lI -a(.I'». .1'1)' <.I' < .1'1' (80)

where .1'1)' = .1'(/0')' .1'1' == s(t I')' Integration of this linear ditTerential inequality and using the
filct that ,.1(.1'1)') ~ ,./(.1') leads to

with ITo == a(,I'o')' In particular. this gives a (.I' I') == a(t I') < IT,~I. contradicting (78). It follows
that B(t) < (1.11 for t 0 ~ t ~ T. Thus the stress a(t) at the shock in a motion governed by
(77) never exceeds a.,,; a similar argument shows that B(t) is never less than am'

7.2. Ala{'fo.I'copic r('.\pot/s/,

We now elucidate the nature of the macroscopic response of the bar under various
force-controlled programs of loading for the class of kinetic rclations described above.
First. let F(t) = i.{, 0 ~ t ~ T. corresponding to loading at a constant rate i. from the
undeformed state. Assume that the final value of force is such that F(T) > a"A II . The
force··elongation response answering to this loading is shown schematically in Fig. 8('1).
After loading begins. the point (J(t). FU» rises from the origin ° along the response curve
OAO. associated with smooth fields of the type (25). so that J(t) = A I (F(t», and there is
no dissipation. When the force reaches the level corresponding to the point 0. in Fig. 8(a),
the stress at x = 0 coincides with the larger transformation stress L.~I' and a (3, I )-shock is
created at x = 0 according to the shock initiation criterion of the preceding section. Kinetic
relation (77) takes over. and the initial shock velocity has the value I'(L.,,). By (74). LI( ~ atl.

so that by (7 I), dL~I) ~ O. IfL l , > at,. then dLI,) > O. the initial shock velocity is positive.
and there is a discontinuity in slope in the F-J response curve at 0 .... as shown in the figure.
If L,II = a.t,. the initial shock velocity is zero, and the slope of the F-J curve is continuous
at 0 •. Under the control of (77). s(t) incre<lses with t. the elongation is given by
J(t) = l1 J1 (F(t),s(t». and the point (e5(t),F(/» moves along the curve O.BP. both F(t)
and e5(t) increasing. This stage of the process is accompanied by dissipation. When the force
has increased to the value associated with point P in Fig. 8(a). the shock has arrived at the
end x = L of the bar. all particles are in phase 3. and the field is smooth. As the force
continues to increase. the response is that of smooth. dissipation-free phase 3 deformations.
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with <5(1) = ~33(F(t». The loading terminates at time T, corresponding to point Z in the
figure.

Now suppose that F(t) is decreased at the constant rate ;. from its largest value F(n

to zero. The response curve at first follows the arc ZPO. corresponding to smooth phase
3 fields. and the response is dissipation free; at Q., the stress at the larger end x = L of the
bar has diminished to the smaller transformation stress ~,"' and a leftward moving (3, 1)­
shock emerges. The sign of t· in (77) is now negative, s(t), F(t) and <5(t) all decrease, and
the arc Q. CA is traced out as the shock returns to x = 0, dissipating as it moves. As F(t)
decreases to zero from its value at A, <5(t) = ~1(F(t)) again along the arc AO, and the final
stage of unloading takes place without dissipation. The total dissipation in the loading cycle
is of course precisely the area of the hysteresis loop AO. PQ.A.

If the loading rate ;. were changed, the loading and unloading "yield points" 0. and
Q. would remain the same. but the arcs 0. BP and Q.CA associated with the dissipative
portion of the process would change. The macroscopic response is thus rate dependent.

Consider now a modified version of the loading history described above in which the
force F(t). after arriving at the value associated with point B in Fig. 8(a), is decreased, and
then ultimately increased again. Figure 8(b) shows the resulting macroscopic response. As
before. the response curve is the arc 00. B during the initial loading phase. the portion
0. B being dissipative. When F(t) begins to decrease, v(F(t)/A(s(t))) remains positive at
tirst. and (77) requires s(t) to continue to increase, accompanied by dissipation. During this
stagc. ij(r) will also continuc to increase, gcnerating the arc BC of the response curve. At
point C. the stress a at the shock has dropped to the value crt" so that by (71). v(O') = 0 at
the corresponding instant. If at, > a,~ in (71), and if F(t) continues to decrease below its
value at C. a(t) will remain in the range for which 1'(0'(t» vanishes, so that .\'(t) = 0 and the
shOl:k remains stationary. During this portion of the unloading process, the corresponding
part CO of the response curve lies along a curve of constant s, and there is no dissipation.
If now the forl:e F(t) is increased. the initial portion of the reloading process takes place
along DC and is dissipation free. If the force ultimately increases sulliciently to raise thc
stress at the shm;k to a value greater than cr,t" the shock resumes its motion. dissipation
will hegin again. and the response curve will proceed along CEo This particular force history
illustrates the occurrenl:e of dissipation-free unloading with a stationary shock.

If. during unloading in the last program, the force had been decreased suflkiently
helow its value at D, the stress at the shock would diminish below the valuc a,~, causing

F

0'-- -=-8

Fig. S(a). Loading unloading path according to kinetic relation (77).
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Fig. X(I:). SCl:om.lloading -unloaJing reloaJing path al:l:orJing to kinctil: n.:lation (77).

I'(a{l)) to become ncgativc, forcing thc shock to move to the kft. Figure ~Hc) shows the
macroscopic response curve 00. BFJ for such a force history, together with the response
on relo'lding. The arcs 00., CE, and GH correspond to dissipution-free periods during
the quasi-static motion.

The macroscopic response of the bar during the loading programs just described dearly
resembles that associated with visco-plastic behavior in several respects. One feature of the
latter kind of behavior that is not present here is that of permanent strain. By abandoning
the requirement a", > 0 in (9) and thus considering a stress-strain curve the local minimum
of which (Fig. I) corresponds to a compressive stress am' one CUll introduce permanent
strain into the macroscopic response (Abcyaratnc and Knowles, 1987b).

7.J. Rate-il/dependel/t he/wrior
The form of the kinetic rcsponse function sketched in Fig.. 7(b) suggests consideration

of the limiting case in which the function (p inverse to l' is a step function as shown in

Fig.9:
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Fig. 9. Rate-independent macroscopic response.

1043

for .v> 0

for .v < 0
(82)

where :E.\f and :Em are the shock initiation stresses. 11m ~ :Em < (1.. < :EM ~ 11M and 111, is the
Maxwell stress. One shows readily that the macroscopic response produced by the kinetic
relation is rate independent and is of the form shown in Fig. 9. If:Em= 11m and :EM = (1M,

the quasi-static motions permitted by the kinetic relation are maximally dissipative in a
definite sense (response of this kind is discussed in detail in Abcyaratne and Knowles
(198741».

F

ere

8OL-----------------=-
Fig. 10. Dissipation-free macroscopic response.
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7.4. Dissipation-free macroscopic response
Finally, we note that the purely conservative (or dissipation free) response of the kind

conventionally associated with elastic behavior results from choosing the inverse kinetic
response function (jJ to be

(jJ(S) = (1c for -"X; < s< OC; (83)

and taking both shock initiation stresses ~\{ and ~'" to be equal to the Maxwell stress (1c.

In this case. the macroscopic response is independent of past history and is as shown in
Fig. 10.
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